
caWorkBench 2.0 Use Cases
Andrea Califano
Kenneth Smith

Manjunath Kustagi
Stuart Fischer

Use Case 1A – Searching for upstream conserved motifs across co-regulated genes
(before caWorkbench 2.0).
The researcher loads microarray gene expression data from local files into his favorite
analysis package and runs filtering, normalization, and perhaps differential expression
routines. He may then need to transfer the data via a file to a separate program for
advanced analysis such as clustering or SOM (self-organizing maps) to find groups of
genes with similar expression patterns. An interesting group is chosen and a list of genes
is exported to a file. To retrieve the upstream sequences for the genes on this list, the
user may first need to translate the gene names exported by the analysis program to a
synonymous name such as the RefSeq or Unigene ID, using another program or website
(e.g. source.stanford.edu) in batch mode or one-at-a-time. The list of standard gene
names is then submitted in batch to another program or script, or perhaps pasted one-by-
one into a website which returns the sequences of upstream regions of the genes. A file
containing these collected sequences is in turn scanned against a public database of
known transcription factor (TF) binding sites. Yet another program may be used to
determine whether the TF patterns returned are over-represented beyond random and thus
potentially real regulatory sites for this set of genes. A separate viewing program may be
necessary to project these patterns onto the sequences.

Issues for Architecture :

1. Mastering use of several different programs and/or websites may be required, and
files must be used to transport data between them.

2. Large amounts of microarray data are manipulated locally.

Use Case 1B –Use of SPLASH in caWorkBench2.0 to detect upstream conservered
sequences:
The researcher loads microarray gene expression data into the caWorkBench 2.0
application using the Project Management Component and performs any needed filtering
and normalization of the data using appropriate methods from the Filter and
Normalization Components. The data can be in the form of locally produced files or
obtained via direct connections to microarray repositories based on the caArray interface
at NCI, Columbia or other sites. He uses the SOM module (from the Analysis
Component) or the Pattern Discovery Component to group genes of similar expression
pattern together. He then selects a map or a pattern containing an interesting set of co-
regulated genes and retrieves their upstream regulatory sequence from the UCSC genome
server using the Promoter Analysis Component, which relies on the caBIO DAS interface
built into caWorkBench 2.0. He then masks repeat and low-complexity regions and runs

SPLASH, from the Pattern Discovery Component, to find candidate cis-regulatory motifs
among these sequences. The user then uses the Promoter Analysis Component again to
scan the sequences and motifs for additional known transcription factor binding sites,
merging the cis-regulatory motifs discovered by SPLASH with previously known TF
binding sites. At each step, intermediate results are stored in the caWorkBench project
panel.

Issues for Architecture:

1. caWorkBench 2.0 is loaded from a central server using Java WebStart, thereafter
it is kept on the local machine until WebStart detects and downloads a new
version.

2. caWorkBench 2.0 possesses a working connection to both NCI caArray- and
ArrayExpress-based microarray data repositories, allowing direct browsing of
remote datasets. They no longer must be stored locally.

3. caWorkBench 2.0 provides interfaces to numerous other algorithms hosted on
servers at Columbia, providing greatly increased processing power for federated
users. caGRID interfaces to these are being explored.

4. A history mechanism is present but needs to store more detail.
5. The ability to automate this process requires the development of workflow design

and support in caWorkbench.
6. Direct support of MAGE-ML must be developed for caWorkBench 2.0.
7. Native reading of Affymetrix format files is not yet available; data must first be

exported to an ASCII format.

Use Case 2a – Current analysis and display of gene expression data on known
networks.

The researcher wishes to find regulatory networks among genes by comparing data from
microarray gene expression experiments representing different states of a tissue (time
points, spatial separation, induced metabolic change etc.). He loads microarray gene
expression data into an analysis program. He performs common filtering and
normalization steps. He then may perform a measure of differential expression, and/or
use a clustering method to find genes with similar expression profiles. A list of genes of
interest is produced and written to a file. He then loads the data into a program or
website which visualizes expression changes of genes on existing regulatory or metabolic
network diagrams, e.g. those available at KEGG. He may also use a program to classify
the genes of interest by Gene Ontology (GO) terms and look for overrepresented terms as
an indication of a potential regulatory or metabolic pathway.

Issues for Architecture:

1. This method is limited to known pathways and relationships.

2. Some programs can analyze the gene list for potential interactions using a prebuilt
database of extracted scientific articles.

Use Case 2b: De novo network prediction (ARACNE) and network visualization by
integrating Cytoscape into caWorkBench 2.0

As in Use Case 1b, the researcher loads a large number of microarray gene expression
profiles (~100), either from local files or from a caArray-based repository, into the
caWorkBench 2.0 Project Management Component and performs any needed filtering
and normalization of the data using appropriate methods from the Filter and
Normalization Components. Using the ARACNE algorithm in the Reverse Engineering
Component, he analyzes the data set and creates an adjacency matrix. He selects a
particular gene, e.g. c-Myc, about which to display connected genes, and the maximum
number of traversed edges from that gene to reach a displayed node (gene). The network
represented in the matrix can then be viewed using the built- in version of Cytoscape or
alternatively directly in caWorkBench’s own Network Browser. A phenotypic selection
is made in the Phenotype Management Component, selecting two classes among the
available microarrays. The results of a T-test on each gene in the network graph for the
two classes is shown on the graph. Genes that are over-expressed in the first class (cases)
are shown in increasingly bright shades of red. Genes that are under-expressed in the first
class (cases) are shown in increasingly bright shades of green.
In the Cytoscape Component, the researcher clicks on c-Myc and selects its “first
neighbors,” using the Select Menu. The first neighbors are highlighted and are also
broadcast as a selection to the Gene Management Component. The list of selected genes
can then be used, as in the previous Use Case 1b, to search for common upstream
regulatory elements or for any other operation that requires a list of genes. Intersection of
the genes with GO families is possible by using the GO Browser Component.

Issues for Architecture:

1. Cytoscape (http://www.cytoscape.org, developed by the Institute of Systems
Biology and others) was integrated into caWorkbench 2.0 as an external plug- in
with minimal effort. Bi-directional communication between the two entities is
enabled

2. Computational modules for performing Mutual Information computations are
provided with Java Web Start deployed external shared libraries

3. Use of the most accurate network creation options results in heavy computations.
An MPI version for use on a parallel cluster architecture is being developed.

